Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Cell Metab ; 35(9): 1646-1660.e3, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37582364

RESUMO

Although many novel gene-metabolite and gene-protein associations have been identified using high-throughput biochemical profiling, systematic studies that leverage human genetics to illuminate causal relationships between circulating proteins and metabolites are lacking. Here, we performed protein-metabolite association studies in 3,626 plasma samples from three human cohorts. We detected 171,800 significant protein-metabolite pairwise correlations between 1,265 proteins and 365 metabolites, including established relationships in metabolic and signaling pathways such as the protein thyroxine-binding globulin and the metabolite thyroxine, as well as thousands of new findings. In Mendelian randomization (MR) analyses, we identified putative causal protein-to-metabolite associations. We experimentally validated top MR associations in proof-of-concept plasma metabolomics studies in three murine knockout strains of key protein regulators. These analyses identified previously unrecognized associations between bioactive proteins and metabolites in human plasma. We provide publicly available data to be leveraged for studies in human metabolism and disease.


Assuntos
Metabolômica , Proteômica , Humanos , Animais , Camundongos , Transdução de Sinais , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único/genética
2.
Sci Rep ; 13(1): 9254, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37286633

RESUMO

Privacy protection is a core principle of genomic but not proteomic research. We identified independent single nucleotide polymorphism (SNP) quantitative trait loci (pQTL) from COPDGene and Jackson Heart Study (JHS), calculated continuous protein level genotype probabilities, and then applied a naïve Bayesian approach to link SomaScan 1.3K proteomes to genomes for 2812 independent subjects from COPDGene, JHS, SubPopulations and InteRmediate Outcome Measures In COPD Study (SPIROMICS) and Multi-Ethnic Study of Atherosclerosis (MESA). We correctly linked 90-95% of proteomes to their correct genome and for 95-99% we identify the 1% most likely links. The linking accuracy in subjects with African ancestry was lower (~ 60%) unless training included diverse subjects. With larger profiling (SomaScan 5K) in the Atherosclerosis Risk Communities (ARIC) correct identification was > 99% even in mixed ancestry populations. We also linked proteomes-to-proteomes and used the proteome only to determine features such as sex, ancestry, and first-degree relatives. When serial proteomes are available, the linking algorithm can be used to identify and correct mislabeled samples. This work also demonstrates the importance of including diverse populations in omics research and that large proteomic datasets (> 1000 proteins) can be accurately linked to a specific genome through pQTL knowledge and should not be considered unidentifiable.


Assuntos
Aterosclerose , Proteoma , Humanos , Proteoma/genética , Teorema de Bayes , Privacidade , Estudo de Associação Genômica Ampla , Aterosclerose/genética , Polimorfismo de Nucleotídeo Único
3.
Ann Am Thorac Soc ; 20(8): 1124-1135, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37351609

RESUMO

Rationale: Chronic obstructive pulmonary disease (COPD) is a complex disease characterized by airway obstruction and accelerated lung function decline. Our understanding of systemic protein biomarkers associated with COPD remains incomplete. Objectives: To determine what proteins and pathways are associated with impaired pulmonary function in a diverse population. Methods: We studied 6,722 participants across six cohort studies with both aptamer-based proteomic and spirometry data (4,566 predominantly White participants in a discovery analysis and 2,156 African American cohort participants in a validation). In linear regression models, we examined protein associations with baseline forced expiratory volume in 1 second (FEV1) and FEV1/forced vital capacity (FVC). In linear mixed effects models, we investigated the associations of baseline protein levels with rate of FEV1 decline (ml/yr) in 2,777 participants with up to 7 years of follow-up spirometry. Results: We identified 254 proteins associated with FEV1 in our discovery analyses, with 80 proteins validated in the Jackson Heart Study. Novel validated protein associations include kallistatin serine protease inhibitor, growth differentiation factor 2, and tumor necrosis factor-like weak inducer of apoptosis (discovery ß = 0.0561, Q = 4.05 × 10-10; ß = 0.0421, Q = 1.12 × 10-3; and ß = 0.0358, Q = 1.67 × 10-3, respectively). In longitudinal analyses within cohorts with follow-up spirometry, we identified 15 proteins associated with FEV1 decline (Q < 0.05), including elafin leukocyte elastase inhibitor and mucin-associated TFF2 (trefoil factor 2; ß = -4.3 ml/yr, Q = 0.049; ß = -6.1 ml/yr, Q = 0.032, respectively). Pathways and processes highlighted by our study include aberrant extracellular matrix remodeling, enhanced innate immune response, dysregulation of angiogenesis, and coagulation. Conclusions: In this study, we identify and validate novel biomarkers and pathways associated with lung function traits in a racially diverse population. In addition, we identify novel protein markers associated with FEV1 decline. Several protein findings are supported by previously reported genetic signals, highlighting the plausibility of certain biologic pathways. These novel proteins might represent markers for risk stratification, as well as novel molecular targets for treatment of COPD.


Assuntos
Pulmão , Doença Pulmonar Obstrutiva Crônica , Humanos , Volume Expiratório Forçado/fisiologia , Proteômica , Capacidade Vital/fisiologia , Espirometria , Biomarcadores
4.
Diabetes ; 72(4): 532-543, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36630488

RESUMO

Proteomics has been used to study type 2 diabetes, but the majority of available data are from White participants. Here, we extend prior work by analyzing a large cohort of self-identified African Americans in the Jackson Heart Study (n = 1,313). We found 325 proteins associated with incident diabetes after adjusting for age, sex, and sample batch (false discovery rate q < 0.05) measured using a single-stranded DNA aptamer affinity-based method on fasting plasma samples. A subset was independent of established markers of diabetes development pathways, such as adiposity, glycemia, and/or insulin resistance, suggesting potential novel biological processes associated with disease development. Thirty-six associations remained significant after additional adjustments for BMI, fasting plasma glucose, cholesterol levels, hypertension, statin use, and renal function. Twelve associations, including the top associations of complement factor H, formimidoyltransferase cyclodeaminase, serine/threonine-protein kinase 17B, and high-mobility group protein B1, were replicated in a meta-analysis of two self-identified White cohorts-the Framingham Heart Study and the Malmö Diet and Cancer Study-supporting the generalizability of these biomarkers. A selection of these diabetes-associated proteins also improved risk prediction. Thus, we uncovered both novel and broadly generalizable associations by studying a diverse population, providing a more complete understanding of the diabetes-associated proteome.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Negro ou Afro-Americano , Fatores de Risco , Obesidade , Biomarcadores
5.
Circulation ; 147(10): 824-840, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36524479

RESUMO

BACKGROUND: Brugada syndrome (BrS) is an inherited arrhythmia syndrome caused by loss-of-function variants in the cardiac sodium channel gene SCN5A (sodium voltage-gated channel alpha subunit 5) in ≈20% of subjects. We identified a family with 4 individuals diagnosed with BrS harboring the rare G145R missense variant in the cardiac transcription factor TBX5 (T-box transcription factor 5) and no SCN5A variant. METHODS: We generated induced pluripotent stem cells (iPSCs) from 2 members of a family carrying TBX5-G145R and diagnosed with Brugada syndrome. After differentiation to iPSC-derived cardiomyocytes (iPSC-CMs), electrophysiologic characteristics were assessed by voltage- and current-clamp experiments (n=9 to 21 cells per group) and transcriptional differences by RNA sequencing (n=3 samples per group), and compared with iPSC-CMs in which G145R was corrected by CRISPR/Cas9 approaches. The role of platelet-derived growth factor (PDGF)/phosphoinositide 3-kinase (PI3K) pathway was elucidated by small molecule perturbation. The rate-corrected QT (QTc) interval association with serum PDGF was tested in the Framingham Heart Study cohort (n=1893 individuals). RESULTS: TBX5-G145R reduced transcriptional activity and caused multiple electrophysiologic abnormalities, including decreased peak and enhanced "late" cardiac sodium current (INa), which were entirely corrected by editing G145R to wild-type. Transcriptional profiling and functional assays in genome-unedited and -edited iPSC-CMs showed direct SCN5A down-regulation caused decreased peak INa, and that reduced PDGF receptor (PDGFRA [platelet-derived growth factor receptor α]) expression and blunted signal transduction to PI3K was implicated in enhanced late INa. Tbx5 regulation of the PDGF axis increased arrhythmia risk due to disruption of PDGF signaling and was conserved in murine model systems. PDGF receptor blockade markedly prolonged normal iPSC-CM action potentials and plasma levels of PDGF in the Framingham Heart Study were inversely correlated with the QTc interval (P<0.001). CONCLUSIONS: These results not only establish decreased SCN5A transcription by the TBX5 variant as a cause of BrS, but also reveal a new general transcriptional mechanism of arrhythmogenesis of enhanced late sodium current caused by reduced PDGF receptor-mediated PI3K signaling.


Assuntos
Síndrome de Brugada , Humanos , Camundongos , Animais , Fosfatidilinositol 3-Quinases/metabolismo , Fenótipo , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas/genética , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Sódio/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo
6.
Sci Rep ; 12(1): 21805, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36526671

RESUMO

Obstructive sleep apnea (OSA) is a common disorder characterized by recurrent episodes of upper airway obstruction during sleep resulting in oxygen desaturation and sleep fragmentation, and associated with increased risk of adverse health outcomes. Metabolites are being increasingly used for biomarker discovery and evaluation of disease processes and progression. Studying metabolomic associations with OSA in a diverse community-based cohort may provide insights into the pathophysiology of OSA. We aimed to develop and replicate a metabolite index for OSA and identify individual metabolites associated with OSA. We studied 219 metabolites and their associations with the apnea hypopnea index (AHI) and with moderate-severe OSA (AHI ≥ 15) in the Hispanic Community Health Study/Study of Latinos (HCHS/SOL) (n = 3507) using two methods: (1) association analysis of individual metabolites, and (2) least absolute shrinkage and selection operator (LASSO) regression to identify a subset of metabolites jointly associated with OSA, which was used to develop a metabolite index for OSA. Results were validated in the Multi-Ethnic Study of Atherosclerosis (MESA) (n = 475). When assessing the associations with individual metabolites, we identified seven metabolites significantly positively associated with OSA in HCHS/SOL (FDR p < 0.05), of which four associations-glutamate, oleoyl-linoleoyl-glycerol (18:1/18:2), linoleoyl-linoleoyl-glycerol (18:2/18:2) and phenylalanine, were replicated in MESA (one sided-p < 0.05). The OSA metabolite index, composed of 14 metabolites, was associated with a 50% increased risk for moderate-severe OSA (OR = 1.50 [95% CI 1.21-1.85] per 1 SD of OSA metabolite index, p < 0.001) in HCHS/SOL and 55% increased risk (OR = 1.55 [95% CI 1.10-2.20] per 1 SD of OSA metabolite index, p = 0.013) in MESA, both adjusted for demographics, lifestyle, and comorbidities. Similar albeit less significant associations were observed for AHI. Replication of the metabolite index in an independent multi-ethnic dataset demonstrates the robustness of metabolomic-based OSA index to population heterogeneity. Replicated metabolite associations may provide insights into OSA-related molecular and metabolic mechanisms.


Assuntos
Aterosclerose , Apneia Obstrutiva do Sono , Humanos , Glicerol , Etnicidade , Hispânico ou Latino
7.
Circ Res ; 131(7): 601-615, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36052690

RESUMO

BACKGROUND: Racial differences in metabolomic profiles may reflect underlying differences in social determinants of health by self-reported race and may be related to racial disparities in coronary heart disease (CHD) among women in the United States. However, the magnitude of differences in metabolomic profiles between Black and White women in the United States has not been well-described. It also remains unknown whether such differences are related to differences in CHD risk. METHODS: Plasma metabolomic profiles were analyzed using liquid chromatography-tandem mass spectrometry in the WHI-OS (Women's Health Initiative-Observational Study; 138 Black and 696 White women), WHI-HT trials (WHI-Hormone Therapy; 156 Black and 1138 White women), MESA (Multi-Ethnic Study of Atherosclerosis; 114 Black and 219 White women), JHS (Jackson Heart Study; 1465 Black women with 107 incident CHD cases), and NHS (Nurses' Health Study; 2506 White women with 136 incident CHD cases). First, linear regression models were used to estimate associations between self-reported race and 472 metabolites in WHI-OS (discovery); findings were replicated in WHI-HT and validated in MESA. Second, we used elastic net regression to construct a racial difference metabolomic pattern (RDMP) representing differences in the metabolomic patterns between Black and White women in the WHI-OS; the RDMP was validated in the WHI-HT and MESA. Third, using conditional logistic regressions in the WHI (717 CHD cases and 719 matched controls), we examined associations of metabolites with large differences in levels by race and the RDMP with risk of CHD, and the results were replicated in Black women from the JHS and White women from the NHS. RESULTS: Of the 472 tested metabolites, levels of 259 (54.9%) metabolites, mostly lipid metabolites and amino acids, significantly differed between Black and White women in both WHI-OS and WHI-HT after adjusting for baseline characteristics, socioeconomic status, lifestyle factors, baseline health conditions, and medication use (false discovery rate <0.05); similar trends were observed in MESA. The RDMP, composed of 152 metabolites, was identified in the WHI-OS and showed significantly different distributions between Black and White women in the WHI-HT and MESA. Higher RDMP quartiles were associated with an increased risk of incident CHD (odds ratio=1.51 [0.97-2.37] for the highest quartile comparing to the lowest; Ptrend=0.02), independent of self-reported race and known CHD risk factors. In race-stratified analyses, the RDMP-CHD associations were more pronounced in White women. Similar patterns were observed in Black women from the JHS and White women from the NHS. CONCLUSIONS: Metabolomic profiles significantly and substantially differ between Black and White women and may be associated with CHD risk and racial disparities in US women.


Assuntos
Doença das Coronárias , Aminoácidos , Doença das Coronárias/diagnóstico , Doença das Coronárias/epidemiologia , Feminino , Hormônios , Humanos , Lipídeos , Fatores de Risco , Estados Unidos/epidemiologia
8.
Sci Adv ; 8(33): eabm5164, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35984888

RESUMO

High-throughput proteomic profiling using antibody or aptamer-based affinity reagents is used increasingly in human studies. However, direct analyses to address the relative strengths and weaknesses of these platforms are lacking. We assessed findings from the SomaScan1.3K (N = 1301 reagents), the SomaScan5K platform (N = 4979 reagents), and the Olink Explore (N = 1472 reagents) profiling techniques in 568 adults from the Jackson Heart Study and 219 participants in the HERITAGE Family Study across four performance domains: precision, accuracy, analytic breadth, and phenotypic associations leveraging detailed clinical phenotyping and genetic data. Across these studies, we show evidence supporting more reliable protein target specificity and a higher number of phenotypic associations for the Olink platform, while the Soma platforms benefit from greater measurement precision and analytic breadth across the proteome.


Assuntos
Proteoma , Proteômica , Adulto , Anticorpos/química , Aptâmeros de Peptídeos/química , Humanos , Estudos Longitudinais , Fenótipo , Proteômica/métodos
9.
Diabetes ; 71(11): 2426-2437, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35998269

RESUMO

Nontargeted metabolomics methods have increased potential to identify new disease biomarkers, but assessments of the additive information provided in large human cohorts by these less biased techniques are limited. To diversify our knowledge of diabetes-associated metabolites, we leveraged a method that measures 305 targeted or "known" and 2,342 nontargeted or "unknown" compounds in fasting plasma samples from 2,750 participants (315 incident cases) in the Jackson Heart Study (JHS)-a community cohort of self-identified African Americans-who are underrepresented in omics studies. We found 307 unique compounds (82 known) associated with diabetes after adjusting for age and sex at a false discovery rate of <0.05 and 124 compounds (35 known, including 11 not previously associated) after further adjustments for BMI and fasting plasma glucose. Of these, 144 and 68 associations, respectively, replicated in a multiethnic cohort. Among these is an apparently novel isomer of the 1-deoxyceramide Cer(m18:1/24:0) with functional geonomics and high-resolution mass spectrometry. Overall, known and unknown metabolites provided complementary information (median correlation ρ = 0.29), and their inclusion with clinical risk factors improved diabetes prediction modeling. Our findings highlight the importance of including nontargeted metabolomics methods to provide new insights into diabetes development in ethnically diverse cohorts.


Assuntos
Glicemia , Diabetes Mellitus , Humanos , Glicemia/metabolismo , Negro ou Afro-Americano , Metabolômica/métodos , Biomarcadores
10.
Nat Commun ; 13(1): 4923, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35995766

RESUMO

Integrating genetic information with metabolomics has provided new insights into genes affecting human metabolism. However, gene-metabolite integration has been primarily studied in individuals of European Ancestry, limiting the opportunity to leverage genomic diversity for discovery. In addition, these analyses have principally involved known metabolites, with the majority of the profiled peaks left unannotated. Here, we perform a whole genome association study of 2,291 metabolite peaks (known and unknown features) in 2,466 Black individuals from the Jackson Heart Study. We identify 519 locus-metabolite associations for 427 metabolite peaks and validate our findings in two multi-ethnic cohorts. A significant proportion of these associations are in ancestry specific alleles including findings in APOE, TTR and CD36. We leverage tandem mass spectrometry to annotate unknown metabolites, providing new insight into hereditary diseases including transthyretin amyloidosis and sickle cell disease. Our integrative omics approach leverages genomic diversity to provide novel insights into diverse cardiometabolic diseases.


Assuntos
Doenças Cardiovasculares , Estudo de Associação Genômica Ampla , População Negra , Doenças Cardiovasculares/etnologia , Doenças Cardiovasculares/genética , Humanos , Metaboloma/genética , Metabolômica , Espectrometria de Massas em Tandem
11.
Eur J Epidemiol ; 37(7): 755-765, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35790642

RESUMO

BACKGROUND: In the last decade, genomic studies have identified and replicated thousands of genetic associations with measures of health and disease and contributed to the understanding of the etiology of a variety of health conditions. Proteins are key biomarkers in clinical medicine and often drug-therapy targets. Like genomics, proteomics can advance our understanding of biology. METHODS AND RESULTS: In the setting of the Cardiovascular Health Study (CHS), a cohort study of older adults, an aptamer-based method that has high sensitivity for low-abundance proteins was used to assay 4979 proteins in frozen, stored plasma from 3188 participants (61% women, mean age 74 years). CHS provides active support, including central analysis, for seven phenotype-specific working groups (WGs). Each CHS WG is led by one or two senior investigators and includes 10 to 20 early or mid-career scientists. In this setting of mentored access, the proteomic data and analytic methods are widely shared with the WGs and investigators so that they may evaluate associations between baseline levels of circulating proteins and the incidence of a variety of health outcomes in prospective cohort analyses. We describe the design of CHS, the CHS Proteomics Study, characteristics of participants, quality control measures, and structural characteristics of the data provided to CHS WGs. We additionally highlight plans for validation and replication of novel proteomic associations. CONCLUSION: The CHS Proteomics Study offers an opportunity for collaborative data sharing to improve our understanding of the etiology of a variety of health conditions in older adults.


Assuntos
Disseminação de Informação , Proteômica , Biomarcadores , Estudos de Coortes , Feminino , Humanos , Masculino , Estudos Prospectivos , Proteômica/métodos
12.
J Womens Health (Larchmt) ; 31(6): 779-786, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35708572

RESUMO

Background: The impact of gender on outcomes in patients suffering from coronavirus disease 2019 (COVID-19) is frequently debated. However, the synchronous influence of additional risk factors is seldom mentioned. With increasing emphasis on identifying patients who are at risk of complications from COVID-19, we decided to conduct a retrospective review to assess the influence of age and body mass index (BMI) on gender-based differences in outcomes. Materials and Methods: A retrospective review of 1288 patients was conducted at a tertiary care hospital. Binary logistic regression was used to assess differences in risk factors and outcomes between genders. The associations between predictors and outcomes were described using odds ratios in tables, forest plots, and regression curves plotted using Sigma Plot. Results: Majority of patients were women (53.6% vs. 46.4%). Median BMI in men was higher than women (p = 0.003). Key predictors for all-cause morbidity/mortality in men were diabetes, chronic kidney disease, and regular use of angiotensin-converting enzyme inhibitors. In women, age >65 and regular use of inhaled steroid were additional risk factors. Men had a higher risk of acute respiratory distress syndrome (2.83 [1.70-4.70]), acute renal failure (1.96 [1.20-3.20]), and had a longer length of stay (0.11 [1.52]). Obesity has a stronger bearing on outcomes in women, and age has a more pronounced effect on outcomes in men. Conclusion: Extremes of BMI and older age are associated with worse outcomes in both men and women. Obesity has a stronger bearing on outcomes of COVID-19 infection in women, while the effect of older age on outcomes is more pronounced in men.


Assuntos
COVID-19 , Índice de Massa Corporal , COVID-19/epidemiologia , Feminino , Humanos , Masculino , Obesidade/epidemiologia , Estudos Retrospectivos , Fatores de Risco , Fatores Sexuais
13.
J Hepatol ; 76(1): 25-33, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34600973

RESUMO

BACKGROUND & AIMS: Identifying fibrosis in non-alcoholic fatty liver disease (NAFLD) is essential to predict liver-related outcomes and guide treatment decisions. A protein-based signature of fibrosis could serve as a valuable, non-invasive diagnostic tool. This study sought to identify circulating proteins associated with fibrosis in NAFLD. METHODS: We used aptamer-based proteomics to measure 4,783 proteins in 2 cohorts (Cohort A and B). Targeted, quantitative assays coupling aptamer-based protein pull down and mass spectrometry (SPMS) validated the profiling results in a bariatric and NAFLD cohort (Cohort C and D, respectively). Generalized linear modeling-logistic regression assessed the ability of candidate proteins to classify fibrosis. RESULTS: From the multiplex profiling, 16 proteins differed significantly by fibrosis in cohorts A (n = 62) and B (n = 98). Quantitative and robust SPMS assays were developed for 8 proteins and validated in Cohorts C (n = 71) and D (n = 84). The A disintegrin and metalloproteinase with thrombospondin motifs like 2 (ADAMTSL2) protein accurately distinguished non-alcoholic fatty liver (NAFL)/non-alcoholic steatohepatitis (NASH) with fibrosis stage 0-1 (F0-1) from at-risk NASH with fibrosis stage 2-4, with AUROCs of 0.83 and 0.86 in Cohorts C and D, respectively, and from NASH with significant fibrosis (F2-3), with AUROCs of 0.80 and 0.83 in Cohorts C and D, respectively. An 8-protein panel distinguished NAFL/NASH F0-1 from at-risk NASH (AUROCs 0.90 and 0.87 in Cohort C and D, respectively) and NASH F2-3 (AUROCs 0.89 and 0.83 in Cohorts C and D, respectively). The 8-protein panel and ADAMTSL2 protein had superior performance to the NAFLD fibrosis score and fibrosis-4 score. CONCLUSION: The ADAMTSL2 protein and an 8-protein soluble biomarker panel are highly associated with at-risk NASH and significant fibrosis; they exhibited superior diagnostic performance compared to standard of care fibrosis scores. LAY SUMMARY: Non-alcoholic fatty liver disease (NAFLD) is one of the most common causes of liver disease worldwide. Diagnosing NAFLD and identifying fibrosis (scarring of the liver) currently requires a liver biopsy. Our study identified novel proteins found in the blood which may identify fibrosis without the need for a liver biopsy.


Assuntos
Proteínas ADAMTS/análise , Cirrose Hepática/diagnóstico , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Adulto , Área Sob a Curva , Biomarcadores/análise , Biópsia/métodos , Biópsia/estatística & dados numéricos , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Humanos , Cirrose Hepática/sangue , Cirrose Hepática/patologia , Modelos Logísticos , Masculino , Massachusetts , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/patologia , Estudos Prospectivos , Curva ROC
14.
Circulation ; 145(5): 357-370, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34814699

RESUMO

BACKGROUND: Plasma proteins are critical mediators of cardiovascular processes and are the targets of many drugs. Previous efforts to characterize the genetic architecture of the plasma proteome have been limited by a focus on individuals of European descent and leveraged genotyping arrays and imputation. Here we describe whole genome sequence analysis of the plasma proteome in individuals with greater African ancestry, increasing our power to identify novel genetic determinants. METHODS: Proteomic profiling of 1301 proteins was performed in 1852 Black adults from the Jackson Heart Study using aptamer-based proteomics (SomaScan). Whole genome sequencing association analysis was ascertained for all variants with minor allele count ≥5. Results were validated using an alternative, antibody-based, proteomic platform (Olink) as well as replicated in the Multi-Ethnic Study of Atherosclerosis and the HERITAGE Family Study (Health, Risk Factors, Exercise Training and Genetics). RESULTS: We identify 569 genetic associations between 479 proteins and 438 unique genetic regions at a Bonferroni-adjusted significance level of 3.8×10-11. These associations include 114 novel locus-protein relationships and an additional 217 novel sentinel variant-protein relationships. Novel cardiovascular findings include new protein associations at the APOE gene locus including ZAP70 (sentinel single nucleotide polymorphism [SNP] rs7412-T, ß=0.61±0.05, P=3.27×10-30) and MMP-3 (ß=-0.60±0.05, P=1.67×10-32), as well as a completely novel pleiotropic locus at the HPX gene, associated with 9 proteins. Further, the associations suggest new mechanisms of genetically mediated cardiovascular disease linked to African ancestry; we identify a novel association between variants linked to APOL1-associated chronic kidney and heart disease and the protein CKAP2 (rs73885319-G, ß=0.34±0.04, P=1.34×10-17) as well as an association between ATTR amyloidosis and RBP4 levels in community-dwelling individuals without heart failure. CONCLUSIONS: Taken together, these results provide evidence for the functional importance of variants in non-European populations, and suggest new biological mechanisms for ancestry-specific determinants of lipids, coagulation, and myocardial function.


Assuntos
Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/genética , Estudo de Associação Genômica Ampla/métodos , Proteoma/metabolismo , Adulto , População Negra , Feminino , Humanos , Masculino
15.
JAMA Cardiol ; 7(2): 184-194, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34851361

RESUMO

Importance: African American individuals have disproportionate rates of coronary heart disease (CHD) but lower levels of coronary artery calcium (CAC), a marker of subclinical CHD, than non-Hispanic White individuals. African American individuals may have distinct metabolite profiles associated with incident CHD risk compared with non-Hispanic White individuals, and examination of these differences could highlight important processes that differ between them. Objectives: To identify novel biomarkers of incident CHD and CAC among African American individuals and to replicate incident CHD findings in a multiethnic cohort. Design, Setting, and Participants: This analysis targeted plasma metabolomic profiling of 2346 participants in the Jackson Heart Study (JHS), a prospective population-based cohort study that included 5306 African American participants who were examined at baseline (2000-2004) and 2 follow-up visits. Replication of CHD-associated metabolites was sought among 1588 multiethnic participants from the Women's Health Initiative (WHI), a prospective population-based multiethnic cohort study of 161 808 postmenopausal women who were examined at baseline (1991-1995) and ongoing follow-up visits. Regression analyses were performed for each metabolite to examine the associations with incident CHD and CAC scores. Data were collected from the WHI between 1994 and 2009 and from the JHS between 2000 and 2015. All data were analyzed from November 2020 to August 2021. Exposures: Plasma metabolites. Main Outcomes and Measures: Incident CHD was defined as definite or probable myocardial infarction or definite fatal CHD in both the JHS and WHI cohorts. In the JHS cohort, silent myocardial infarction between examinations (as determined by electrocardiography) and coronary revascularization were included in the incident CHD analysis. Coronary artery calcium was measured using a 16-channel computed tomographic system and reported as an Agatston score. Results: Among 2346 African American individuals in the JHS cohort, the mean (SD) age was 56 (13) years, and 1468 individuals (62.6%) were female. Among 1588 postmenopausal women in the WHI cohort, the mean (SD) age was 67 (7) years; 217 individuals (13.7%) self-identified as African American, 1219 (76.8%) as non-Hispanic White, and 152 (9.6%) as other races or ethnicities. In the fully adjusted model including 1876 individuals, 46 of 303 targeted metabolites were associated with incident CHD (false discovery rate q <0.100). Data for 32 of the 46 metabolites were available in the WHI cohort, and 13 incident CHD-associated metabolites from the JHS cohort were replicated in the WHI cohort. A total of 1439 participants from the JHS cohort with available CAC scores received metabolomic profiling. Nine metabolites were associated with CAC scores. Minimal overlap was found between the results from the incident CHD and CAC analyses, with only 3 metabolites shared between the 2 analyses. Conclusions and Relevance: This cohort study identified metabolites that were associated with incident CHD among African American individuals, including 13 incident CHD-associated metabolites that were replicated in a multiethnic population and 9 novel metabolites that included N-acylamides, leucine, and lipid species. These findings may help to elucidate common and distinct metabolic processes that may be associated with CHD among individuals with different self-identified race.


Assuntos
Negro ou Afro-Americano , Doença da Artéria Coronariana/metabolismo , Doença das Coronárias/metabolismo , Metabolômica , Calcificação Vascular/metabolismo , Adulto , Idoso , Estudos de Coortes , Doença da Artéria Coronariana/epidemiologia , Doença das Coronárias/epidemiologia , Feminino , Humanos , Incidência , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais , Estados Unidos/epidemiologia , Calcificação Vascular/epidemiologia , População Branca
16.
Circ Genom Precis Med ; 14(6): e003421, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34706549

RESUMO

BACKGROUND: suPAR (Soluble urokinase plasminogen activator receptor) has emerged as an important biomarker of coagulation, inflammation, and cardiovascular disease (CVD) risk. The contribution of suPAR to CVD risk and its genetic influence in Black populations have not been evaluated. METHODS: We measured suPAR in 3492 Black adults from the prospective, community-based JHS (Jackson Heart Study). Cross-sectional associations of suPAR with lifestyle and CVD risk factors were assessed, whole-genome sequence data were used to evaluate genetic associations of suPAR, and relationships of suPAR with incident CVD outcomes and overall mortality were estimated over follow-up. RESULTS: In Cox models adjusted for traditional CVD risk factors, estimated glomerular filtration rate, and CRP (C-reactive protein), each 1-SD higher suPAR was associated with a 21% to 31% increased risk of incident coronary heart disease, heart failure, stroke, and mortality. In the genome-wide association study, 2 missense (rs399145 encoding p.Thr86Ala, rs4760 encoding p.Phe272Leu) and 2 noncoding regulatory variants (rs73935023 within an enhancer element and rs4251805 within the promoter) of PLAUR on chromosome 19 were each independently associated with suPAR and together explained 14% of suPAR phenotypic variation. The allele frequencies of each of the four suPAR-associated genetic variants differ considerably across African and European populations. We further show that PLAUR rs73935023 can alter transcriptional activity in vitro. We did not find any association between genetically determined suPAR and CVD in JHS or a larger electronic medical record-based analyses of Blacks or Whites. CONCLUSIONS: Our results demonstrate the importance of ancestry-differentiated genetic variation on suPAR levels and indicate suPAR is a CVD biomarker in Black adults.


Assuntos
Doenças Cardiovasculares , Receptores de Ativador de Plasminogênio Tipo Uroquinase , Adulto , Doenças Cardiovasculares/genética , Estudos Transversais , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Estudos Prospectivos , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética
17.
JCI Insight ; 6(20)2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34506304

RESUMO

Endothelial dysfunction accompanies the microvascular thrombosis commonly observed in severe COVID-19. Constitutively, the endothelial surface is anticoagulant, a property maintained at least in part via signaling through the Tie2 receptor. During inflammation, the Tie2 antagonist angiopoietin-2 (Angpt-2) is released from endothelial cells and inhibits Tie2, promoting a prothrombotic phenotypic shift. We sought to assess whether severe COVID-19 is associated with procoagulant endothelial dysfunction and alterations in the Tie2/angiopoietin axis. Primary HUVECs treated with plasma from patients with severe COVID-19 upregulated the expression of thromboinflammatory genes, inhibited the expression of antithrombotic genes, and promoted coagulation on the endothelial surface. Pharmacologic activation of Tie2 with the small molecule AKB-9778 reversed the prothrombotic state induced by COVID-19 plasma in primary endothelial cells. Lung autopsies from patients with COVID-19 demonstrated a prothrombotic endothelial signature. Assessment of circulating endothelial markers in a cohort of 98 patients with mild, moderate, or severe COVID-19 revealed endothelial dysfunction indicative of a prothrombotic state. Angpt-2 concentrations rose with increasing disease severity, and the highest levels were associated with worse survival. These data highlight the disruption of Tie2/angiopoietin signaling and procoagulant changes in endothelial cells in severe COVID-19. Our findings provide rationale for current trials of Tie2-activating therapy with AKB-9778 in COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , Células Endoteliais/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Receptor TIE-2/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Angiopoietina-2/metabolismo , Compostos de Anilina , Feminino , Expressão Gênica , Humanos , Pulmão , Masculino , Pessoa de Meia-Idade , Receptor TIE-2/genética , SARS-CoV-2 , Transdução de Sinais , Ácidos Sulfônicos , Doenças Vasculares/metabolismo , Adulto Jovem
19.
Cell Rep Med ; 2(5): 100287, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33969320

RESUMO

Mechanisms underlying severe coronavirus disease 2019 (COVID-19) disease remain poorly understood. We analyze several thousand plasma proteins longitudinally in 306 COVID-19 patients and 78 symptomatic controls, uncovering immune and non-immune proteins linked to COVID-19. Deconvolution of our plasma proteome data using published scRNA-seq datasets reveals contributions from circulating immune and tissue cells. Sixteen percent of patients display reduced inflammation yet comparably poor outcomes. Comparison of patients who died to severely ill survivors identifies dynamic immune-cell-derived and tissue-associated proteins associated with survival, including exocrine pancreatic proteases. Using derived tissue-specific and cell-type-specific intracellular death signatures, cellular angiotensin-converting enzyme 2 (ACE2) expression, and our data, we infer whether organ damage resulted from direct or indirect effects of infection. We propose a model in which interactions among myeloid, epithelial, and T cells drive tissue damage. These datasets provide important insights and a rich resource for analysis of mechanisms of severe COVID-19 disease.

20.
Circ Genom Precis Med ; 14(3): e003191, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34019435

RESUMO

BACKGROUND: Increased left ventricular (LV) mass is associated with adverse cardiovascular events including heart failure (HF). Both increased LV mass and HF disproportionately affect Black individuals. To understand the underlying mechanisms, we undertook a proteomic screen in a Black cohort and compared the findings to results from a White cohort. METHODS: We measured 1305 plasma proteins using the SomaScan platform in 1772 Black participants (mean age, 56 years; 62% women) in JHS (Jackson Heart Study) with LV mass assessed by 2-dimensional echocardiography. Incident HF was assessed in 1600 participants. We then compared protein associations in JHS to those observed in White participants from FHS (Framingham Heart Study; mean age, 54 years; 56% women). RESULTS: In JHS, there were 110 proteins associated with LV mass and 13 proteins associated with incident HF hospitalization with false discovery rate <5% after multivariable adjustment. Several proteins showed expected associations with both LV mass and HF, including NT-proBNP (N-terminal pro-B-type natriuretic peptide; ß=0.04; P=2×10-8; hazard ratio, 1.48; P=0.0001). The strongest association with LV mass was novel: LKHA4 (leukotriene-A4 hydrolase; ß=0.05; P=5×10-15). This association was confirmed on an alternate proteomics platform and further supported by related metabolomic data. Fractalkine/CX3CL1 (C-X3-C Motif Chemokine Ligand 1) showed a novel association with incident HF (hazard ratio, 1.32; P=0.0002). While established biomarkers such as cystatin C and NT-proBNP showed consistent associations in Black and White individuals, LKHA4 and fractalkine were significantly different between the two groups. CONCLUSIONS: We identified several novel biological pathways specific to Black adults hypothesized to contribute to the pathophysiologic cascade of LV hypertrophy and incident HF including LKHA4 and fractalkine.


Assuntos
Negro ou Afro-Americano , Quimiocina CX3CL1/sangue , Ecocardiografia , Insuficiência Cardíaca , Hipertrofia Ventricular Esquerda , População Branca , Adulto , Idoso , Biomarcadores/sangue , Cistatina C/sangue , Feminino , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/fisiopatologia , Humanos , Hipertrofia Ventricular Esquerda/sangue , Hipertrofia Ventricular Esquerda/diagnóstico por imagem , Hipertrofia Ventricular Esquerda/fisiopatologia , Incidência , Masculino , Pessoa de Meia-Idade , Peptídeo Natriurético Encefálico/sangue , Fragmentos de Peptídeos/sangue , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA